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In 2016, NASA's Game Changing Development Program awarded the University of Texas at Arlington to develop a microfluidic
electrochemical reactor (MFECR) to convert CO, into oxygen and ethylene with a theoretical oxygen recovery rate of 73%.
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ENGINEERING INNDVATIVE CHEMISTRY ADVANCED ECLSS

PROJECT OBJECTIVES

1. Advance the technology readiness of the
proposed technology to TRL 4.

2. To increase the O, recovery efficiency of the
process to >50% (from 37% currently)

3. To mature the hardware system to process 1.0
kg/day of CO,

CELL STACK

Technology Advancement Overview




e 3D Multi-physics model developed at NASA Marshall Space Flight
Center (MFSC) on electrochemical CO2 conversion to O2 and C:Hs at
ambient conditions via MFECR.

* In the model the electrochemical physics is coupled with all the other
physics phenomena involved in the process, such as fluid flow and
mass transfer of reactant/product species in free and porous media,
convective/conduction/radiative heat transfer, as well as conduction of
DC electrical current with Joule heating generation.

* This work aims to use this 3D model to build a comprehensive,
rigorous, and experimentally validated simulator that will be used as a
valuable tool to not only assist the authors on the EDU design but also
to optimize its operation.

- MFECR’s 3D Model




End plate

Electrode

CAD drawing used to fabricate the Assembled MFECR’s elements
MFECR’s elements as material domains
for the model.

Electrolyte wall

Fabrication of MFECR’s elements (CAD’s drawings)




MFECR’s model domain (fittings removed)

MFECR’s CAD drawing

MFECR model's memory required: 185 GB
High-Performance Computer (512 GB RAM):
Physical memory 183 GB

Virtual memory 2GB




MFECR’s assembly (f|tt|ngs removed) Flow channel domains

Solid Cylinder

Anode O, channel

MFECR Model’'s flow domains



MFECR’s Straight Section

-\ Model's Flow Domains




Free Flow Rate and Pressure on Serpentines (cathode, electrolyte, and anode)

Cathode Flow (CO, inlet vel. : 0.02 m/s) Electrolyte Flow (KOH sol. inlet vel. : 0.02 m/s) : Anode Flow (Recycled O, inlet vel. : 0.02 m/s)

Porous Flow Rate and Pressure on
GDLs (cathode and anode)

S =

Brinkman approach for velocity/pressure:

» free medium on serpentines

* porous medium on GDL and MPL.

Maxwell-Stefan approach for mass transport of concentrated
species on serpentines, GDL, and MPL.




&

Electrical potential applied : 3V

[N}

1.5

Given a differential electrical potential
applied between electrodes, Ohm's law
and the charge conservation equation is
used to determine current/potential
distribution  through all MFECR’s
elements.




. Effect of electrolyte inlet temperature on cathode’s GDL temperature

Celsius degree

Heat transfer mechanisms:

Q= 8.6 mL/min ¢ Conduction
 Free convection outer surface —
tlmmmym‘_i: alkaline-solution x%n‘ 6V amblent ) )
ooy it » * Thermal radiation outer surface —

Thermal radiation

ambient
» Flowing gas/liquid convection
» Joule heating

Joule heating
W/m3

| Roem temperature 77 F 0.2

Model approach on heat transfer



CO, Conversion to C,H, with H, as byproduct

Acid Electrolyte E° (V)
Cathode

2CO, + 12H* + 12e- = C,H, + 4H,0 -0.35

12H* + 12e" = 6H, 0.00
Anode

12H,0 = 24H* + 24e" + 60, -1.23
Total

2CO, +8H,0 =C,H, +6H, + 60, -1.58
Alkaline Electrolyte
Cathode

2CO, + 8H,0 + 12e = C,H, + 120H" -1.18

12H,0 + 12e" = 6H, + 120H- -0.40
Anode

120H = 6H,0 + 12e" + 30, -0.83
Total

2CO, +8H,0 =C,H,+6H, +60, -2.41

Model’'s Electrochemical

H,O Electrolysis

Acid Electrolyte E° (V)
Cathode

4H* + 4e- = 2H, 0.00
Anode

2H,0 =4H* +4e + O, -1.23
Total

2H,0 =2H, +0, -1.23
Alkaline Electrolyte
Cathode

4H,0 + 4e-=2H, + 40H- -0.40
Anode

40H =2H,0 +4e-+ 0O, -0.83
Total

2H,0 =2H,+0, -1.23

reactions on GDL domains




Reactant Products

Model approach on EC cathodic reactions




* Arigorous model has been developed and deployed to
simulate a MFECR unit and optimize the design and
performance.

e The MFECR unit is equipped with the instrumentation
and meters that will allow full validation of the model
including determination of the electrochemical
kinetics parameters.

Conclusions
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